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Interaction of a vortex ring with the free surface of an ideal fluid

V. P. Ruban*
L. D. Landau Institute for Theoretical Physics, 2 Kosygin Street, 117334 Moscow, Russia

and Optics and Fluid Dynamics Department, Riso” National Laboratory, DK-4000 Roskilde, Denmark
~Received 31 January 2000!

The interaction of a small vortex ring with the free surface of a perfect fluid is considered. In the frame of
the point ring approximation, the asymptotic expression for the Fourier components of radiated surface waves
is obtained in the case when the vortex ring comes from infinity and has both horizontal and vertical compo-
nents of the velocity. The nonconservative corrections to the equations of motion of the ring, due to Cherenkov
radiation, are derived.

PACS number~s!: 47.15.Ki, 47.32.Cc, 47.35.1i
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I. INTRODUCTION

The study of the interaction between vortex structures
fluid and the free surface is important from both practi
and theoretical points of view. In general, a detailed inve
gation of this problem is very hard. Even the theory of p
tential surface waves and the dynamics of vortices in an
finite space taken separately still have a lot of unsolv
fundamental problems. Only the consideration of sign
cantly simplified models can help us to understand the p
cesses which take place in the combined system.

In many cases it is possible to neglect the compressib
of the fluid as well as the energy dissipation. Therefore,
model of ideal homogeneous incompressible fluid is v
useful for hydrodynamics. Because of the conservative
ture of this model, the application of the well develop
apparatus of Hamiltonian dynamics becomes possible@1,2#.
An example of an effective use of the Hamiltonian form
ism in hydrodynamics is the introduction of canonical va
ables for investigations of potential flows of perfect flui
with a free boundary. Zakharov showed at the end of
1960s@3# that the surface shapez5h(x,y,t) and the value of
the velocity potentialc(x,y,t) on the surface can be consid
ered as generalized coordinate and momentum, respecti

It is important to note that a variational formulation
Hamiltonian dynamics in many cases allows us to obt
good finite-dimensional approximations which reflect t
main features of the behavior of the original system. Th
are several possibilities for a parametrization of nonpoten
flows of perfect fluid by some variables with dynamics d
termined by a variational principle. All are based on the co
servation of the topological characteristics of vortex lines
ideal fluid flows which follows from the freezing-in of th
vorticity field V(r ,t)5curlv(r ,t). In particular, this is the
representation of the vorticity by Clebsch canonical variab
l andm @4,2#,

V~r ,t !5@“l3“m#.

However, the Clebsch representation can only describe fl
with a trivial topology ~see, e.g.,@5#!. It cannot describe
flows with linked vortex lines. Besides, the variablesl and
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m are not suitable for the study of localized vortex structu
such as vortex filaments. In such cases it is more conven
to use the parametrization of vorticity in terms of vorte
lines and consider the motion of these lines@6,7#, even if the
global definition of canonically conjugated variables is im
possible due to topological reasons.

This approach is used in the present paper to describe
interaction of deep~or small! vortex rings of almost idea
shape in the perfect fluid with the free surface. Beside
theoretical interest, the solution of this mathematical pro
lem gives a qualitative explanation of some simple labo
tory experiments with real vortex rings in water. In the ca
under consideration, the main interaction of the vortex rin
with the surface can be described as the dipole-dipole in
action between ‘‘point’’ vortex rings and their ‘‘images.’
Moving rings interact with the surface waves, leading to
diation due to the Cherenkov effect. Deep rings disturb
surface weakly, so the influence of the surface can be ta
into account as some small corrections in the equations
motion for the parameters of the rings.

In Sec. II, we discuss briefly general properties of vort
line dynamics, which follow from the freezing-in of the vo
ticity field. In Sec. III, possible simplifications of the mode
are made and the point ring approximation is introduced
Sec. IV, the interaction of the ring with its image is consi
ered. In Sec. V, we calculate the Fourier components
Cherenkov surface waves radiated by a moving vortex r
and determine the nonconservative corrections caused b
interaction with the surface for the vortex ring equations
motion.

II. VORTEX LINE MOTION IN PERFECT FLUID

It is a well known fact that the freezing-in of the vorticit
lines follows from the Euler equation for ideal fluid motion

Vt5curl@v3V#, v5curl21 V.

Vortex lines are transported by the flow@1,4,8#. They do not
appear or disappear, nor do they intersect in the proces
motion. This property of perfect fluid flows is general for a
Hamiltonian systems of the hydrodynamic type. For simpl
ity, let us consider temporally the incompressible fluid wit
out the free surface in infinite space. The dynamics of
system is specified by a basic LagrangianL@v#, which is a
functional of the solenoidal velocity field. The relations b
4950 ©2000 The American Physical Society
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PRE 62 4951INTERACTION OF A VORTEX RING WITH THE FREE . . .
tween the velocityv, the generalized vorticityV, the basic
LagrangianL@v#, and the HamiltonianH@V# are the follow-
ing @9#:

V5curl~dL/dv! ⇒ v5v@V#, ~2.1!

H@V#5S E v•~dL/dv!d3r2L@v# D U
v5v[ V]

, ~2.2!

v5curl~dH/dV!. ~2.3!

For ordinary Eulerian ideal hydrodynamics in infini
space, the basic Lagrangian is

LE@v#5E v2

2
dr ⇒ VE5curlv.

The Hamiltonian in this case coincides with the kinetic e
ergy of the fluid and in terms of the vorticity field it reads

HE@V#52 1
2 E VD21Vdr5E E V~r1!•V~r2!

8pur12r2u
dr1dr2 ,

whereD21 is the inverse Laplace operator.
Another example is the basic Lagrangian of electron m

netohydrodynamics~EMHD! which takes into account th
magnetic field created by the current of electron flu
through the motionless ion fluid,

LEMHD@v#5 1
2 E v~12D21!vdr ,

VEMHD5curl~12D21!v.

The Hamiltonian of EMHD is

HEMHD@V#5
1

8pE E e2ur12r2u

ur12r2u
V~r1!•V~r2!dr1dr2 .

The second example shows that the relation between
velocity and the vorticity can be more complex than in us
hydrodynamics. In the general case, a Hamiltonian of so
hydrodynamical system is not a necessary quadratic fu
tional of the vorticity~see the examples of integrable Ham
tonians in@11#!.

The equation of motion for the generalized vorticity is

Vt5curl@curl~dH/dV!3V#. ~2.4!

This equation corresponds to the transport of frozen-in v
tex lines by the velocity field. In this process, all topologic
invariants@10# of the vorticity field are conserved. The con
servation of the topology can be expressed by the follow
relation @7#:

V~r ,t !5E d„r2R~a,t !…„V0~a!“a…R~a,t !da

5
„V0~a!“a…R~a,t !

deti]R/]ai U
a5a(r ,t)

, ~2.5!

where the mappingR(a,t) describes the deformation of line
of some initial solenoidal fieldV0(r ). Here a(r ,t) is the
inverse mapping with respect toR(a,t). The direction of the
vectorb,
-

-

he
l
e
c-

r-
l

g

b~a,t !5„V0~a!“a…R~a,t !, ~2.6!

coincides with the direction of the vorticity field at the poi
R(a,t). The equation of motion for the mappingR(a,t) can
be obtained with the help of the relation

Vt~r ,t !5curlrE d„r2R~a,t !…@Rt~a,t !3b~a,t !#da,

~2.7!

which immediately follows from Eq.~2.5!. The substitution
of Eq. ~2.7! into the equation of motion~2.4! gives @11#

curlrS b~a,t !3@Rt~a,t !2v~R,t !#

deti]R/]ai D50.

One can solve this equation by eliminating the curlr operator.
Using the general relationship between variational deri
tives of some functionalF@V#,

Fb3curlS dF

dV~R! D G5
dF

dR~a!
U

V0

, ~2.8!

it is possible to represent the equation of motion forR(a,t)
as follows:

@„V0~a!“a…#3R~a!Rt~a!%5
dH†V@R#‡

dR~a!
U

V0

. ~2.9!

It is not difficult to check now that the dynamics of th
vorticity field with topological properties defined byV0 in
the infinite space is equivalent to the requirement of an
tremum of the action (dS5d*LV0

dt50), where the La-
grangian is

LV0
5E ~@Rt~a!3D„R~a!…#•„V0~a!“a…R~a!!da

2H†V@R#‡. ~2.10!

Here the vector functionD(R) must have the unit divergenc

~“R•D~R!!51 ~2.11!

and it is defined up to the addition of an arbitrary solenoi
vector function. It should be mentioned that for the case
ordinary Eulerian incompressible hydrodynamics, the va
tional principle~2.10! with the particular formD5R/3 was
proved in the works of Berdichevsky@6#. For general Hamil-
tonian systems of the hydrodynamic type, this principle~also
with D5R/3) was formulated in the paper of Kuznetsov a
Ruban@7#. Furthermore, in the present paper we will use t
above-mentioned choice ofD„R….

The topological properties of the vorticity field can b
very complicated. For instance, a single vortex line can fi
three-dimensional domain. In a more simple case, each
tex line forms a two-dimensional vortex surface. In the si
plest case, when all vortex lines are closed it is possible
choose new curvilinear coordinatesn1 ,n2 ,j in a space such
that Eq.~2.5! can be written in a simple form,

V~r ,t !5E
N

d2n R d„r2R~n,j,t !…Rjdj. ~2.12!
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Heren is the label of a line lying on a fixed two-dimension
manifoldN, andj is some parameter along the line. Witho
loss of generality, we omit a given functiong0(n1 ,n2) in
front of d2n because it can always be made equal to unity
a redefinition ofn1 and n2. It is clear that there is a gaug
freedom in the definition ofn and j in Eq. ~2.12!. This
freedom is connected with the possibility of changing t
longitudinal parameter

j5j~ j̃,n,t !

and also with the relabeling ofn,

n5n~ñ,t !,
]~n1 ,n2!

]~ ñ1 ,ñ2!
51. ~2.13!

Now we consider again the ordinary perfect fluid with
free surface. To describe the flow entirely, it is sufficient
specify the vorticity fieldV(r ,t) and the motion of the free
surface. Thus, we can use the shapeR(n,j,t) of the vortex
lines as a new dynamic object instead ofV(r ,t). It is impor-
tant to note that in the presence of the free surface, the e
tions of motion forR(n,j,t) follow from a variational prin-
ciple as in the case of infinite space. It has been shown@12#
that the Lagrangian for a perfect fluid, with vortices in
bulk and with a free surface, can be written in the form

L5E
N

d2n

3 R ~@Rt3R#•Rj!dj1E Ch tdr'2H@R,C,h#.

~2.14!

The functionsC(r' ,t) andh(r' ,t) are the surface degree
of freedom for the system.C is the boundary value of the
total velocity potential, which includes the part from vortic
inside the fluid, andh is the deviation of the surface from th
horizontal plane. This formulation supposes that vortex lin
do not intersect the surface anywhere. In the present pa
only this case is considered.

The HamiltonianH in Eq. ~2.14! is merely the total en-
ergy of the system expressed in terms of@R,C,h#.

Variation with respect toR(n,j,t) of the action defined
by the Lagrangian~2.14! gives the equation of motion fo
vortex lines in the form

@Rj3Rt#5
dH@V@R#,C,h#

dR
. ~2.15!

This equation determines only the transversal componen
Rt , which coincides with the transversal component of
actual solenoidal velocity field. The possibility of solvin
Eq. ~2.15! with respect to the time derivativeRt is closely
connected with the special gauge-invariant nature of
H@R# dependence, which results in

dH
dR

•Rj[0.

The tangential component ofRt with respect to vorticity
direction can be taken arbitrary. This property is in acc
dance with the longitudinal gauge freedom. The vorticity d
namics does not depend on the choice of the tangential c
ponent.
y
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Generally speaking, only the local introduction of cano
cal variables for curve dynamics is possible. For instanc
piece of the curve can be parametrized by one of the th
Cartesian coordinates,

R5„X~z,t !,Y~z,t !,z….

In this case, the functionsX(z,t) andY(z,t) are canonically
conjugated variables. Another example is the parametriza
in cylindrical coordinates, where variablesZ(u,t) and
(1/2)R2(u,t) are canonically conjugated. Curves with com
plicated topological properties need a general gauge-free
scription by means of a parameterj.

It should be mentioned for clarity that the conservation
all vortex tube volumes, reflecting the incompressibility
the fluid, is not the constraint in this formalism. It is a co
sequence of the symmetry of the Lagrangian~2.14! with re-
spect to the relabeling~2.13! n→ ñ @6,9#. Volume conserva-
tion follows from that symmetry in accordance wit
Noether’s theorem. To prove this statement, we should c
sider such a subset of relabelings which forms a o
parameter group of transformations of the dynamical va
ables,

R~n1 ,n2 ,j!→Rt~n1 ,n2 ,j!.

For small values of the group parameter,t, the relabelings
n( ñ,t) are specified by a function of two variablesT(n1 ,n2)
~with zero value on the boundary]N) so that the corre-
sponding transformations are

RT
t ~n1 ,n2 ,j!5RS n12t

]T

]n2
1O~t2!, n21t

]T

]n1

1O~t2!, j D . ~2.16!

Due to Noether’s theorem, the following quantity is an int
gral of motion@13#:

I T5E
N

d2n R dL
dRt

•

]RT
t

]t
U

t50

dj

5
1

3EN
d2n R @R3Rj#•~R2T12R1T2!dj.

After simple integrations by parts, the preceding express
takes the form@6#

I T5E
N

d2n R T~n1 ,n2!~@R13R2#•Rj!dj

5E
N

T~n1 ,n2!V~n1 ,n2 ,t !d2n, ~2.17!

whereV(n1 ,n2 ,t)d2n is the volume of an infinitely thin vor-
tex tube with cross sectiond2n. It is obvious that actually the
function V does not depend on timet because the function
T(n1 ,n2) is arbitrary.

If vortex lines are not closed but form a family of en
closed tori, then the relabeling freedom is less rich. In t
case, one can obtain in a similar way the conservation la
for volumes inside closed vortex surfaces. Noether’s theo
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PRE 62 4953INTERACTION OF A VORTEX RING WITH THE FREE . . .
gives integrals of motion which depend on an arbitrary fu
tion S(z) of one variable, wherez is the label of the tori.

In the case of complicated topology of the vorticity fiel
there is a correspondence between each globally defined
tex surface, if any exists, and the conservation of the volu
inside that vortex surface.

It is easy to check that if instead of the old Hamiltoni
H†V@R#‡ we consider the new Hamiltonian

H̃@R#5H†V@R#‡1I T ,

then the dynamics of the vorticityV(r ,t) will remain the
same. The termI T produces just a relabeling~2.13! of n in
the equation of motion forR. Each stationary solution
Rstat(n,j) with this new Hamiltonian and some particul
choice ofT(n1 ,n2) describes a stationary flow of the fluid
The stability of such a flow depends on a definiteness of
sign of the second variationd2H̃@Rstat# near the stationary
distributionRstat of the vortex lines.

III. POINT RING APPROXIMATION

In a general case, an analysis of the dynamics define
the Lagrangian~2.14! is much too complicated. We do no
even have the exact expression for the Hamilton
H@R,C,h# because it requires the explicit knowledge of t
solution of the Laplace equation with a boundary value
signed on a nonflat surface. Another reason is the very h
nonlinearity of the problem.

In this paper, we consider some limits where it is possi
to simplify the system significantly. Namely, we will sup
pose that the vorticity is concentrated in several very t
vortex rings of almost ideal shape. For a solitary ring,
perfect shape is stable for a wide range of vorticity distrib
tions through the cross section. This shape provides an
tremum of the energy for given values of the volumes
vortex tubes and for a fixed momentum of the ring. As
ready mentioned, volume conservation follows from No
her’s theorem. Therefore, some of these quantities~those of
which are produced by the subset of commuting transfor
tions! can be considered as canonical momenta. Corresp
ing cyclical coordinates describe the relabeling~2.13! of the
line markers, which does not change the vorticity field. A
tually, these degrees of freedom take into account a rota
around the central line of the tube. This line represents
mean shape of the ring and we are interested in how it
haves in time. For our analysis, we do not need the exp
values of cyclical coordinates, but only the conserved v
umes as parameters in the Lagrangian.

A possible situation is when a typical time of the intera
tion with the surface and with other rings is much larger th
the largest period of oscillations corresponding to deviati
of the ring shape from the perfect one. Under this conditi
excitations of all~noncyclical! internal degrees of freedom
are always small, and a variational ansatz completely di
garding them reflects the behavior of the system adequa
The circulations

Gn5E
N n

d2n
-

or-
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e
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n
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e
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e
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of the velocity for each ring do not depend on time. A perfe
ring is described by the coordinateRn of the center and by
the vectorPn5GnSn , whereSn is an oriented area of the
ring. We use in this work the Cartesian system of coordina
(x,y,z), so that the vertical coordinate isz and the unper-
turbed surface is atz50. The corresponding components
the vectorsRn andPn are

Rn5~Xn ,Yn ,Zn!, Pn5~Pxn ,Pyn ,Pzn!.

It is easy to verify that the vectorsPn are canonically conju-
gated momenta for the coordinatesRn . To verify that, we
can parametrize the shape of each vortex line in the follo
ing manner:

R~j,t !5 (
m52M

M

rm~ t !eimj, r2m5 r̄m . ~3.1!

Here rm(t) are complex vectors. Substituting this into th
first term of the Lagrangian~2.14! gives

1

3 R ~@Rt3R#Rj!dj

52p i ṙ0~@r213r1#12@r223r2#1••• !1
d$•••%

dt

12p i ~ ṙ21@r213r2#2 ṙ1@r13r22# !1••• .

~3.2!

If we neglect the internal degrees of freedom which descr
deviations of the ring from the ideal shape

~r21!25~r1!250, r25r2250, . . . ,

then the previous statement about canonically conjuga
variables becomes obvious:

Rn5r0n , Pn52pGn• i @r21n3r1n#. ~3.3!

Such an approximation is valid only in the limit when siz
of rings are small in comparison with the distances to
surface and the distances between different rings,

APn

Gn
!uZnu,uRn2Rl u, lÞn. ~3.4!

These conditions are necessary for ensuring that the ex
tions of all internal degrees of freedom are small. Obvious
this is not true when a ring approaches the surface. In
case, one should take into account also the internal deg
of freedom for the vortex lines.

The inequalities~3.4! also imply that vortex rings in the
limit under consideration are similar to point magnet dipol
This analogy is useful for calculation of the Hamiltonian f
interacting rings. In the main approximation, we may restr
the analysis by taking into account the dipole-dipole inter
tion only.

It should be mentioned that in some papers~see, e.g.,@14#
and references in that book! the discrete variables identical t
Rn andPn are derived in a different way and referred to
the vortex magnetization variables.



a
im
m

n
o

th
y
n

ol
o

u-

ei
th
fo

oy
a

r-

d
on

ain
e
r a
be
the

by

ee

ake

le
ly
er
st-
ce
ian

c-
.
n

in
lid
es

4954 PRE 62V. P. RUBAN
In the expression for the Hamiltonian, several simplific
tions can be made. Let us recall that for each moment of t
it is possible to decompose the velocity field into two co
ponents,

v5V01“f. ~3.5!

Here the fieldV0 satisfies the following conditions:

~“•V0!50, curl V05V, ~n•V0!uz5h50.

The boundary value of the surface wave potentialf(r ) is
c(r'). In accordance with these conditions, the kinetic e
ergy is decomposed into two parts and the Hamiltonian
the fluid takes the form

H5 1
2 E

z,h
V0

2d3r1 1
2 E c~“f•dS!1

g

2E h2d r' .

~3.6!

The last term in this expression is the potential energy of
fluid in the gravitational field. If all vortex rings are far awa
from the surface, then its deviation from the horizontal pla
is small,

u“hu!1, uhu!uZnu. ~3.7!

Therefore, in the main approximation the energy of dip
interaction with the surface can be described with the help
so-called ‘‘images.’’ The images are vortex rings with circ
lationsGn and parameters

Rn* 5~Xn ,Yn ,2Zn!, Pn* 5~Pxn ,Pyn ,2Pzn!. ~3.8!

The kinetic energy for the system of point rings and th
images is the sum of the self-energies of rings and
dipole-dipole interaction between them. The expression
the kinetic energy of small-amplitude surface waves empl
the operatork̂, which multiplies Fourier components of
function by the absolute valuek of a two-dimensional wave
vector k. So the actual HamiltonianH is approximately
equal to the simplified HamiltonianH̃,

H'H̃5(
n

En~Pn!1
1

2E ~c k̂c1gh2!dr'1
1

8p

3(
ln

3~Rnl* •Pn!~Rnl* •Pl* !2uRnl* u2~Pn•Pl* !

uRnl* u5
1

1

8p

3(
l 5” n

3~Rnl•Pn!~Rnl•Pl !2uRnlu2~Pn•Pl !

uRnlu5
, ~3.9!

where

Rnl5Rn2Rl , Rnl* 5Rn2Rl* . ~3.10!

With logarithmic accuracy, the self-energy of a thin vo
tex ring is given by the expression

En~Pn!'
Gn

2

2
A Pn

pGn
lnS ~Pn /Gn!3/4

An
1/2 D , ~3.11!

where the small constantAn is proportional to the conserve
volume of the vortex tube forming the ring. This expressi
-
e

-

-
f

e

e

e
f

r
e
r
s

can easily be derived if we take into account that the m
contribution to the energy is from the vicinity of the tub
where the velocity field is approximately the same as nea
straight vortex tube. The logarithmic integral should then
taken between the limits from the thickness of the tube to
radius of the ring.

In the relationC5F01c, the potentialF0 is approxi-
mately equal to the potential created on the flat surface
the dipoles and their images,

F0~r'!'F~r'!52
1

2p (
n

„Pn•~r'2Rn!…

ur'2Rnu3
. ~3.12!

In this way we arrive at the following simplified system
describing the interaction of point vortex rings with the fr
surface:

L̃5(
n

ṘnPn1E ḣ~c1F!d2r'2H̃@$Rn ,Pn%,h,c#.

~3.13!

It should be noted that due to the condition~3.4!, the
maximum value of the velocityV0 on the surface is much
less than the typical velocities of the vortex rings,

Pn

Zn
3

!
Gn

3/2

Pn
1/2

.

Therefore, the termV0
2/2 in the Bernoulli equation

C t1V0
2/21gh1~small corrections!50

is small in comparison with the termC t . The Lagrangian
~3.13! is in accordance with this fact because it does not t
into account terms like (1/2)*V0

2h d2r' in the Hamiltonian
expansion.

IV. INTERACTION OF THE VORTEX RING
WITH ITS IMAGE

Now let us consider for simplicity the case of a sing
ring. It is shown in the next section that for a sufficient
deep ring, the interaction with its image is much strong
than the interaction with the surface waves. So it is intere
ing to examine the motion of the ring neglecting the surfa
deviation. In this case we have the integrable Hamilton
for the system with two degrees of freedom~motion is in a
vertical plane!,

H5
1

64p S a~Px
21Pz

2!1/42
2Pz

21Px
2

uZu3
D , ~4.1!

wherea'const. The system has integrals of motion,

Px5p5const, H5E5const,

so it is useful to consider the level lines of the energy fun
tion in the left (Z,Pz)-half-plane takingPx as the parameter
If one will draw the sketch of level lines of the functio
H(Z,Pz), Eq. ~4.1!, then he will immediately distinguish
three regions of qualitatively different behavior of the ring
that part of this half-plane where our approximation is va
@see Eq.~3.4!#. In the upper region, the phase trajectori
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come from infinitely large negativeZ where they have a
finite positive value ofPz . In the course of motion,Pz in-
creases. This behavior corresponds to the case when the
approaches the surface. Due to the symmetry of the Ha
tonian ~4.1!, there is the symmetric lower region, where t
vortex ring moves away from the surface, and there is
middle region, wherePz changes sign from negative to pos
tive at a finite value ofZ. This is the region of the finite
motion.

In all three cases, the track of the vortex ring bends
ward the surface, i.e., the ring is ‘‘attracted’’ by the surfac

V. CHERENKOV INTERACTION OF A VORTEX RING
WITH SURFACE WAVES

When the ring is not very far from the surface and n
very slow, the interaction with the surface waves becom
significant. Let us consider the effect of Cherenkov radiat
of surface waves by a vortex ring which moves from infin
to the surface. This case is the most definite from the vie
point of the choice of initial conditions. We suppose that t
deviation of the free surface from the horizontal planez50
is zero att→2`, and we are interested in the asympto
behavior of fieldsh andc at large negativet. In this situa-
tion we can neglect the interaction of the ring with its ima
in comparison with the self-energy and concentrate our
tention on interaction with surface waves only.

The ring moves in the (x,z) plane with an almost constan
velocity. In the main approximation the positionR of the
vortex ring is given by the relations

R'Ct, C5
]E~P!

]P
5~Cx,0,Cz!;

P

P3/2
, ~5.1!

Cx.0, Cz.0, t,0.

The equations of motion for the Fourier components ofh
andc follow from the Lagrangian~3.13!,

ḣk5kck , ċk1ghk52Ḟk . ~5.2!

@The equations for the surface waves are the same in the
when a rigid body moves deeply under the surface of
ideal fluid. The difference is in the relationsC(P) between
momenta and velocities. As against the Eq.~5.1!, for a rigid
bodyC;P. The equations of motion forP also differ. Nev-
ertheless, if the velocity of a vortex ring or a rigid body
almost constant, as it is assumed here, then in the main
proximation it is not possible to distinguish what approach
the water surface, rigid body, or vortex ring by measur
the corresponding surface pattern. The difference in a t
poral behavior of the patterns appears only when the velo
is changed significantly by an interaction in the course
motion. So, in principle, the situation can be resolved. Pr
ably, an appropriate analysis should take into account
the effects of the viscosity. This interesting problem is n
considered in the present paper.#

Eliminating hk , we obtain an equation forck ,

c̈k1gkck52F̈k , ~5.3!

where Fk is the Fourier transform of the functionF(r').
Simple calculations give
ing
il-

e

-
.

t
s
n

-
e

t-

se
n

p-
s

-
ty
f
-

so
t

Fk5
e2 ikxX

2p
E PzZ2Pxx

A~x21y21Z2!3
e2 i (kxx1kyy)dxdy

52
e2 ikxX

2p
S PzD~kuZu!1 i

Px

uZu

]

]kx

D~kuZu!D ,

~5.4!

where

D~q!5E e2 iqadadb

A~a21b211!3
52pe2uqu. ~5.5!

Finally, we have forFk ,

Fk5S iPxkx

k
2PzDe2kuZu2 ikxX5S iPxkx

k
2PzDet(kCz2 ikxCx).

~5.6!

Due to the exponential time behavior ofFk(t), it is easy to
obtain the expressions forck(t) and hk(t). Introducing the
definition

lk5kCz2 ikxCx , ~5.7!

we can represent the answer in the following form:

ck~ t !5S P

CkD lk
3

gk1lk
2

elkt, ~5.8!

hk~ t !5S P

CD lk
2

gk1lk
2

elkt. ~5.9!

The radiated surface waves influence the motion of
vortex ring. The terms produced by the fieldhk(t) in the
equations of motion for the ring come from the pa
*ḣFd2r' in the Lagrangian~3.13!. Using Eq.~5.6! for the
Fourier transform ofF, we can represent these terms as f
lows:

dẊ5E d2k

~2p!2
ḣk

ikx

k
ekZ1 ikxX,

dŻ5E d2k

~2p!2
ḣke

kZ1 ikxX,

d Ṗx52E d2k

~2p!2
ḣk~ ikx!S Pz1

iPxkx

k DekZ1 ikxX,

d Ṗz52E d2k

~2p!2
ḣkkS Pz1

iPxkx

k DekZ1 ikxX.

We can use Eq.~5.9! to obtain the nonconservative corre
tions for time derivatives of the ring parameters from the
expressions. It is convenient to write down these correcti
in the autonomic form

dẊ5S P

CD E d2k

~2p!2 S ikx

k D ~kCz2 ikxCx!
3

gk1~kCz2 ikxCx!
2

e22kuZu,

~5.10!
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dŻ5S P

C
D E d2k

~2p!2

~kCz2 ikxCx!
3

gk1~kCz2 ikxCx!
2

e22kuZu,

~5.11!

d Ṗx52S P

CD 2E d2k

~2p!2 S ikx

k D
3

~kCz2 ikxCx!
2~Cz

2k21Cx
2kx

2!

gk1~kCz2 ikxCx!
2

e22kuZu,

~5.12!

d Ṗz52S P

CD 2E d2k

~2p!2

3
~kCz2 ikxCx!

2~Cz
2k21Cx

2kx
2!

gk1~kCz2 ikxCx!
2

e22kuZu, ~5.13!

whereCx andCz can be understood as explicit functions ofP
defined by the dependenceC(P)5]E/]P. More exact defi-
nition of Cx andCz as Ẋ and Ż is not necessary.

To analyze the above integrals, let us first perform th
the integration over the anglew in k space. It is convenien
to use the theory of contour integrals in the complex plane
variablew5cosw. The contourg of integration in our case
goes clockwise just around the cut, which is from21 to 11.
We define the sign of the square rootR(w)5A12w2 so that
its values are positive on the top side of the cut and nega
on the bottom side. After introducing the quantities

a5
Cz

Cx
, vk

25gk, bk5
vk

Cxk
5

1

Cx
Ag

k
, ~5.14!

we have to use the following relations:

I 1~a,b![2 R
g

dw

A12w2

w~w1 ia !3

b22~w1 ia !2

5p~112b2!1p i S ~b2 ia !b2

A12~b2 ia !2
2c.c.D ,

~5.15!

I 2~a,b![ i R
g

dw

A12w2

~w1 ia !3

b22~w1 ia !2

52pa1S b2

A12~b2 ia !2
1c.c.D , ~5.16!

J1~a,b![ i R
g

dw

A12w2

w~w1 ia !2~w21a2!

b22~w1 ia !2

524pab21pS b~b2 ia !~a21~b2 ia !2!

A12~b2 ia !2
1c.c.D ,

~5.17!
e

f

e

J2~a,b![ R
g

dw

A12w2

~w1 ia !2~w21a2!

b22~w1 ia !2

522p~a21b211/2!

2p i S b@a21~b2 ia !2#

A12~b2 ia !2
2c.c.D , ~5.18!

where the sign of the complex square root should be take
accordance with the previous choice. It can easily be s
that the integralsI 2 and J1 have resonance structure ata
!1 andubu,1. This is the Cherenkov effect itself. Now th
expressions~5.10!–~5.13! take the form

dẊ5
Px

~2p!2E0

1`

I 1~a,bk!k2e22kuZudk

5
Px

~2p!2 S g

Cx
2D 3

F1S a,
2guZu

Cx
2 D , ~5.19!

dŻ5
Px

~2p!2E0

1`

I 2~a,bk!k2e22kuZudk

5
Px

~2p!2 S g

Cx
2D 3

F2S a,
2guZu

Cx
2 D , ~5.20!

d Ṗx5
Px

2

~2p!2E0

1`

J1~a,bk!k3e22kuZudk

5
Px

2

~2p!2 S g

Cx
2D 4

G1S a,
2guZu

Cx
2 D , ~5.21!

d Ṗz5
Px

2

~2p!2E0

1`

J2~a,bk!k3e22kuZudk

5
Px

2

~2p!2 S g

Cx
2D 4

G2S a,
2guZu

Cx
2 D . ~5.22!

Here the functionsF1(a,Q)•••G2(a,Q) are defined by the
integrals

F1~a,Q!5E
0

1`

I 1S a,
1

Aj
D exp~2Qj!j2dj, ~5.23!

F2~a,Q!5E
0

1`

I 2S a,
1

Aj
D exp~2Qj!j2dj, ~5.24!

G1~a,Q!5E
0

1`

J1S a,
1

Aj
D exp~2Qj!j3dj, ~5.25!

G2~a,Q!5E
0

1`

J2S a,
1

Aj
D exp~2Qj!j3dj, ~5.26!

and Q52guZu/Cx
2 is a dimensionless quantity.@If we con-

sider a fluid with surface tensions, then two parameters
appear:Q andT5gs/Cx

4 . In that case one should substitu
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bk→A1/j1Tj as the second argument of the functio
I 1 ,I 2 ,J1 ,J2 in the integrals~5.23!–~5.26!.# The Cherenkov
effect is most clear when the motion of the ring is almo
horizontal. In this casea→10, and it is convenient to re
write these integrals without use of complex functions,

F1~10,Q!5pE
0

1`

~j212j!exp~2Qj!dj22p

3E
0

1 jdj

A12j
exp~2Qj!, ~5.27!

F2~10,Q!5G1~10,Q!522pE
1

1` j3/2dj

Aj21
exp~2Qj!,

~5.28!

G2~10,Q!52pE
0

1`

~j312j2!exp~2Qj!dj

12pE
0

1 j2dj

A12j
exp~2Qj!. ~5.29!

Here the square root is the usual positive defined real fu
tion. We see that only resonant wave numbers contribut
the functionsF2 and G1, while F1 and G2 are determined
also by small values ofj which correspond to the large-sca
surface deviation comoving with the ring. So the effect of t
Cherenkov radiation on the vortex ring motion is the m
distinct in the equations forŻ andṖx . It is especially impor-
tant forPx because the radiation of surface waves is the o
reason for change of this quantity in the frame of our a
proximation.

The typical values ofQ are large in practical situations. I
this limit, asymptotic values of the above integrals are

F1~10,Q!'2
9p

2Q4
, G2~10,Q!'

18p

Q5
,

F2~10,Q!5G1~10,Q!'22pAp
exp~2Q!

AQ
,

and

dẊ'2
9

64p

P

uZu3

1

Q
,

dŻ'2
1

16Ap

P

uZu3
Q211/2exp~2Q!,
s

t

c-
to

e
t

ly
-

d Ṗx'2
1

32Ap

P2

uZu4
Q311/2exp~2Q!,

d Ṗz'1
9

32p

P2

uZu4

1

Q
.

It follows from these expressions that the interaction with
surface waves is small in comparison with the interact
between the ring and its image, ifQ@1. The corresponding
small factors are 1/Q for X andPz , andQ211/2exp(2Q) for
Z. Contrary to the flat boundary, nowPx is not conserved. It
decreases exponentially slowly and this is the main effec
Cherenkov radiation.

We see also that the interaction with waves turns the v
tor P towards the surface, which results in a faster bound
approach by the ring track.

VI. CONCLUSIONS

In this paper, we have derived the simplified Lagrang
for the description of the motion of deep vortex rings und
the free surface of perfect fluid. We have analyzed the in
grable dynamics corresponding to the pure interaction of
single point vortex ring with its image. It was found th
there are three types of qualitatively different behavior of
ring. The interaction of the ring with the surface has an
tractive character in all three regimes. The Fourier com
nents of radiated Cherenkov waves were calculated for
case when the vortex ring comes from infinity and has b
horizontal and vertical components of the velocity. The no
conservative corrections to the equations of motion of
ring, due to Cherenkov radiation, were derived. Due to th
corrections, the track of the ring bends towards the surf
faster than in the case of a flat surface. For simplicity,
calculations in Sec. V were performed for a single ring. T
generalization for the case of many rings is straightforwa
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