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Interaction of a vortex ring with the free surface of an ideal fluid
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The interaction of a small vortex ring with the free surface of a perfect fluid is considered. In the frame of
the point ring approximation, the asymptotic expression for the Fourier components of radiated surface waves
is obtained in the case when the vortex ring comes from infinity and has both horizontal and vertical compo-
nents of the velocity. The nonconservative corrections to the equations of motion of the ring, due to Cherenkov
radiation, are derived.

PACS numbgs): 47.15.Ki, 47.32.Cc, 47.35.i

[. INTRODUCTION w are not suitable for the study of localized vortex structures
such as vortex filaments. In such cases it is more convenient
The study of the interaction between vortex structures in 40 use the parametrization of vorticity in terms of vortex
fluid and the free surface is important from both practicallines and consider the motion of these lifiés7], even if the
and theoretical points of view. In general, a detailed investi-global definition of canonically conjugated variables is im-
gation of this problem is very hard. Even the theory of po-possible due to topological reasons.
tential surface waves and the dynamics of vortices in an in- This approach is used in the present paper to describe the
finite space taken separately still have a lot of unsolvednteraction of deefor smal) vortex rings of almost ideal
fundamental problems. Only the consideration of signifi-shape in the perfect fluid with the free surface. Besides a
cantly simplified models can help us to understand the protheoretical interest, the solution of this mathematical prob-
cesses which take place in the combined system. lem gives a qualitative explanation of some simple labora-
In many cases it is possible to neglect the compressibilityory experiments with real vortex rings in water. In the case
of the fluid as well as the energy dissipation. Therefore, theunder consideration, the main interaction of the vortex rings
model of ideal homogeneous incompressible fluid is verywith the surface can be described as the dipole-dipole inter-
useful for hydrodynamics. Because of the conservative naaction between “point” vortex rings and their “images.”
ture of this model, the application of the well developedMoving rings interact with the surface waves, leading to ra-
apparatus of Hamiltonian dynamics becomes poss$b@. diation due to the Cherenkov effect. Deep rings disturb the
An example of an effective use of the Hamiltonian formal- surface weakly, so the influence of the surface can be taken
ism in hydrodynamics is the introduction of canonical vari-into account as some small corrections in the equations of
ables for investigations of potential flows of perfect fluids motion for the parameters of the rings.
with a free boundary. Zakharov showed at the end of the In Sec. I, we discuss briefly general properties of vortex
19604 3] that the surface shape= 7(x,y,t) and the value of line dynamics, which follow from the freezing-in of the vor-
the velocity potentialy(x,y,t) on the surface can be consid- ticity field. In Sec. Ill, possible simplifications of the model
ered as generalized coordinate and momentum, respectivelgrte made and the point ring approximation is introduced. In
It is important to note that a variational formulation of Sec. IV, the interaction of the ring with its image is consid-
Hamiltonian dynamics in many cases allows us to obtairered. In Sec. V, we calculate the Fourier components of
good finite-dimensional approximations which reflect theCherenkov surface waves radiated by a moving vortex ring
main features of the behavior of the original system. Thereind determine the nonconservative corrections caused by the
are several possibilities for a parametrization of nonpotentiainteraction with the surface for the vortex ring equations of
flows of perfect fluid by some variables with dynamics de-motion.
termined by a variational principle. All are based on the con-
servation of the topological characteristics of vortex lines in II. VORTEX LINE MOTION IN PERFECT FLUID
ideal fluid flows which follows from the freezing-in of the ] o o
vorticity field Q(r,t)=curlv(r,t). In particular, this is the  tIS a well known fact that the f'reezmg'-m of thg vorticity
representation of the vorticity by Clebsch canonical variabledines follows from the Euler equation for ideal fluid motion,

N andu [4,2], Q,=cur[vxQ], v=curl 1Q.

Q(r,t)=[VAXVpu]. Vortex lines are transported by the flg#,4,8). They do not

appear or disappear, nor do they intersect in the process of

However, the Clebsch representation can only describe flomsotion. This property of perfect fluid flows is general for all

with a trivial topology (see, e.g.[5]). It cannot describe Hamiltonian systems of the hydrodynamic type. For simplic-

flows with linked vortex lines. Besides, the variablesand ity, let us consider temporally the incompressible fluid with-
out the free surface in infinite space. The dynamics of the
system is specified by a basic Lagrangldrv], which is a

*Email address: ruban@itp.ac.ru functional of the solenoidal velocity field. The relations be-
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tween the velocityv, the generalized vorticityf2, the basic b(a,t)=(Qq¢(a)Vy)R(at), (2.6

LagrangiarL[v], and the Hamiltoniar[ Q] are the follow-
ing [9]: coincides with the direction of the vorticity field at the point
R(a,t). The equation of motion for the mappifiR(a,t) can
Q=curl(6L/év) = v=v[Q], (2D pe obtained with the help of the relation
H[Q]= J V~(6L/é\l)d3r—L[VJ) o (2.2 Qt(r,t)zcurlrf S(r—R(a,t))[Ry(at)Xb(at)]da,
v=V[Q

(2.7)

v=curl( §H/ 6Q). (2.3

) o ~ which immediately follows from Eq(2.5). The substitution
For ordinary Eulerian ideal hydrodynamics in infinite of Eq. (2.7) into the equation of motioK2.4) gives[11]
space, the basic Lagrangian is
b(a,t)X[Rt(a.t)—v(R,t)]) ~

det|oR/oal|

r

V2
LE[v]zfgdr = Qe=curlv.

One can solve this equation by eliminating the cagerator.

The Hamiltonian in this case coincides with the kinetic en-ygsing the general relationship between variational deriva-
ergy of the fluid and in terms of the vorticity field it reads i es of some functionaF[ Q]

Q(rq)-Q(rp)

—_; -1 = —_—mm
He[Q]= ZJQA Qdr jj Y P— drqdr,,

(2.9

= ams

b><cur|( 5Q(R) = 5R(a)|go,

whereA ™! is the inverse Laplace operator. o ) ) )
Another example is the basic Lagrangian of electron magit is possible to represent the equation of motion R¢a,t)
netohydrodynamic$EMHD) which takes into account the as follows:

magnetic field created by the current of electron fluid SHIQ[R]]
through the motionless ion fluid, [(Qy(a)VI)IXR(R()} = (2.9
oR(a) |,
0
L v =1J v(1—A"Yvdr,
el V=2 ( It is not difficult to check now that the dynamics of the
Qeypp=curl(1—A-1v. vorti'cit'y _field with 'topolo.gical properties dgfined o in
the infinite space is equivalent to the requirement of an ex-
The Hamiltonian of EMHD is tremum of the action §S=45/Lq dt=0), where the La-
—lry—1y| grangian is

1
Mool 01= 5 | [ T 00 ar0r,
) ) ol Lo~ [ (R(@XDR@)]- @@V )R(@)da

The second example shows that the relation between the
velocity and the vorticity can be more complex than in usual —HIQ[R]]. (2.10
hydrodynamics. In the general case, a Hamiltonian of some ) L
hydrodynamical system is not a necessary quadratic funddere the vector functioB(R) must have the unit divergency
tior!al of.the vorticity(see the examples of integrable Hamil- (Vg-D(R))=1 (2.12
tonians in[11]).
The equation of motion for the generalized vorticity is  and it is defined up to the addition of an arbitrary solenoidal
_ vector function. It should be mentioned that for the case of
0= curleurl( 5H/ 5C2) X Q. 24 ordinary Eulerian incompressible hydrodynamics, the varia-

This equation corresponds to the transport of frozen-in vorfional principle(2.10 with the particular formD=R/3 was
tex lines by the velocity field. In this process, all topological Proved in the works of Berdichevskg]. For general Hamil-
invariants[10] of the vorticity field are conserved. The con- tonian systems of the hydrodynamic type, this princijlso

servation of the topology can be expressed by the followin%i'[h D=R/3) was formulated in the paper of Kuznetsov and
relation[7]: uban[7]. Furthermore, in the present paper we will use the

above-mentioned choice @f(R).
The topological properties of the vorticity field can be
very complicated. For instance, a single vortex line can fill a
three-dimensional domain. In a more simple case, each vor-
(25  tex line forms a two-dimensional vortex surface. In the sim-
plest case, when all vortex lines are closed it is possible to
choose new curvilinear coordinatesg, v,,£ in a space such
where the mappin&(a,t) describes the deformation of lines that Eq.(2.5) can be written in a simple form,
of some initial solenoidal field2y(r). Here a(r,t) is the
Lnev;(r)sreb,mappmg with respect R(a,t). The direction of the Qr,t)= dezv 3g S —R(r,EDRAE (212

Q(r,t)= f 8(r—R(a,1))(Qy(a)VyR(at)da

_(Q(a)VIR(aY)|
~ def[dR/da|

|a=a(r,t)
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Herew is the label of a line lying on a fixed two-dimensional ~ Generally speaking, only the local introduction of canoni-
manifold A/, and¢ is some parameter along the line. Without cal variables for curve dynamics is possible. For instance, a
loss of generality, we omit a given functiopy(v,,v,) in  piece of the curve can be parametrized by one of the three
front of d?» because it can always be made equal to unity byCartesian coordinates,
a redefinition ofy, andv,. It is clear that there is a gauge _
freedom in the definition ofv and ¢ in Eq. (2.12. This R=(X(z0,Y(2,),2).
freedom is connected with the possibility of changing the|n this case, the functions(z,t) andY(z,t) are canonically
longitudinal parameter conjugated variables. Another example is the parametrization

£=£Ev.t) in cylindrical coordinates, where variableg(6,t) and

. (1/2)R?(4,t) are canonically conjugated. Curves with com-
and also with the relabeling of, pliqatgd topological properties need a general gauge-free de-
scription by means of a parametér

~ Avy,vy) It should be mentioned for clarity that the conservation of
v=v(v,t), ﬁ: : (2.13  all vortex tube volumes, reflecting the incompressibility of
V1,V2

the fluid, is not the constraint in this formalism. It is a con-
Now we consider again the ordinary perfect fluid with g Seguence of the symmetry of the Lagrangiari4) with re-

free surface. To describe the flow entirely, it is sufficient toSPect to the relabelin2.13 v— v [6,9]. Volume conserva-
specify the vorticity fieldQ(r,t) and the motion of the free tion follows from that symmetry in accordance with
surface. Thus, we can use the sha{e,&,t) of the vortex l\!oether’s theorem. To prove th|s_stateme.nt, we should con-
lines as a new dynamic object instead(fr,t). It is impor- sider such a subset of relabgllngs which forms_ a one-
tant to note that in the presence of the free surface, the equRarameter group of transformations of the dynamical vari-
tions of motion forR(v, £,t) follow from a variational prin-  ables,

ciple as in the case of infinite space. It has been shd&h R(vy,v9,8)—R(vy,vs,&).

that the Lagrangian for a perfect fluid, with vortices in its

bulk and with a free surface, can be written in the form  For small values of the group parametey,the relabelings

d2v v(v,7) are specified by a function of two variabl&6v; , v,)
sz — ﬁg ([R¢X R]~R§)d§+f Y pdr, —H[R, Y, 7]. (with zero value on the boundargV\) so that the corre-
N3 (2.14 sponding transformations are

The functions¥(r, ,t) and (r, ,t) are the surface degrees R(v1,v2,6)=R
of freedom for the systen¥ is the boundary value of the
inide the lid, ands e deviaton of the scrace rom the. Lo, ¢). 219
horizontal plane. This formulation supposes that vortex lines

do not intersect the surface anywhere. In the present papdbue to Noether's theorem, the following quantity is an inte-

aT )
Vl—T(?—VZ-i-O(T ), vot T&—Vl

only this case is considered. gral of motion[13]:

The HamiltonianX in Eq. (2.14) is merely the total en- SC ORI
ergy of the system expressed in termg B{WV, 7]. lT:f A2y ¢ — . —T

Variation with respect tdR(»,£,t) of the action defined N ORy d7| __,
by the Lagrangiar(2.14 gives the equation of motion for 1
vortex lines in the form _ §f d2v Eﬁ [RXR¢]- (RyT1— Ry T,)dé.

N
_ SH[Q[R],V, 7]
[RXR]=——F—. (2.19 . . . . .
oR After simple integrations by parts, the preceding expression

takes the forni6]
This equation determines only the transversal component of
R, which coincides with the transversal component of the ITZJ d2y 3€ T(v1,v2)([RyXR,]-R,)dé
actual solenoidal velocity field. The possibility of solving N
Eq. (2.15 with respect to the time derivativi, is closely
connected with the special gauge-invariant nature of the :f T(vy,v)W(vy,v5,1)d2p, .17
H[R] dependence, which results in N

oH R.=0 whereV(v,,v,,t)d?v is the volume of an infinitely thin vor-
SR OE tex tube with cross secticdfv. It is obvious that actually the
function V does not depend on timebecause the function
The tangential component &f; with respect to vorticity T(wv,v,) is arbitrary.
direction can be taken arbitrary. This property is in accor- If vortex lines are not closed but form a family of en-
dance with the longitudinal gauge freedom. The vorticity dy-closed tori, then the relabeling freedom is less rich. In that
namics does not depend on the choice of the tangential contase, one can obtain in a similar way the conservation laws
ponent. for volumes inside closed vortex surfaces. Noether’s theorem
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gives integrals of motion which depend on an arbitrary func-of the velocity for each ring do not depend on time. A perfect
tion S(¢) of one variable, wheré is the label of the tori. ring is described by the coordinak, of the center and by

In the case of complicated topology of the vorticity field, the vectorP,=TI",S,, whereS, is an oriented area of the
there is a correspondence between each globally defined vaiing. We use in this work the Cartesian system of coordinates
tex surface, if any exists, and the conservation of the voluméx,y,z), so that the vertical coordinate isand the unper-
inside that vortex surface. turbed surface is a@=0. The corresponding components of

It is easy to check that if instead of the old Hamiltonianthe vectorsR,, andP, are
H[Q[R]] we consider the new Hamiltonian

Ry=(Xn,Yn,Zn),  Pn=(Pxn, I::'yn Pzn).
HIRI=HIQR]]+I, It is easy to verify that the vectoid, are canonically conju-

gated momenta for the coordinatBg. To verify that, we

then the dynamics of the vorticit2(r,t) will remain the  can parametrize the shape of each vortex line in the follow-
same. The ternhy produces just a relabelin@.13 of vin  jng manner:

the equation of motion forR. Each stationary solution
Rgiaf v, €) with this new Hamiltonian and some particular , _
choice of T(v,,v,) describes a stationary flow of the fluid. R(fi):m;M (D™, 1o p=rp. ()
The stability of such a flow depends on a definiteness of the

sign of the second variatioA®H[ Ry, near the stationary Herer,(t) are complex vectors. Substituting this into the

M

distribution Rg,; Of the vortex lines. first term of the Lagrangiaf2.14) gives
1
I1l. POINT RING APPROXIMATION 3 é ([R¢X R]Rg)df
In a general case, an analysis of the dynamics defined by d
the Lagrangian2.14) is much too complicated. We do not = 2mir ([ XTI ]+2[F_pXT,]+ )+ {)
even have the exact expression for the Hamiltonian dt
H[R,W¥,n] because it requires the explicit knowledge of the . .
solution of the Laplace equation with a boundary value as- F2mi(ra[r o Xra]=ryraXr o) +--- .
signed on a nonflat surface. Another reason is the very high (3.2

nonlinearity of the problem.
In this paper, we consider some limits where it is possibldf we neglect the internal degrees of freedom which describe
to simplify the system significantly. Namely, we will sup- deviations of the ring from the ideal shape
pose that the vorticity is concentrated in several very thin ) )
vortex rings of almost ideal shape. For a solitary ring, the (r-pe=(ry°=0, ro=r_,=0,...,
perfect shape is stable for a wide range of vorticity distribu- . ] .
tions through the cross section. This shape provides an efben the previous statement about canonically conjugated
tremum of the energy for given values of the volumes ofvariables becomes obvious:
vortex tubes and for a fixed momentum of the ring. As al- _ _ .
ready mentioned, volume conservation follows from Noet- Rn=Ton, Pn=2mTn-ilr-1nXT1n]- @3
her's theorem. Therefore, some of these quantitiesse of Such an approximation is valid only in the limit when sizes

V.Vh'Ch are Eroduceg by(;he subset_of Icommutmg transforma-f rings are small in comparison with the distances to the
Flons) can be considered as canonica momenta. Correspon urface and the distances between different rings,

ing cyclical coordinates describe the relabeligl3 of the

line markers, which does not change the vorticity field. Ac- P,

tually, these degrees of freedom take into account a rotation \/ 5 <|Z.,|R\—Ry|, 1#n (3.9
around the central line of the tube. This line represents the n

mean ?ha.pe of the ring and we are interested in how it .b‘.a‘i'hese conditions are necessary for ensuring that the excita-
haves in time. For our analysis, we do not need the epr|C|{.

. . ions of all internal degrees of freedom are small. Obviously,
values of cyclical coordinates, but only the conserved vol-, . ™ ;
. X this is not true when a ring approaches the surface. In that
umes as parameters in the Lagrangian.

A possible situation is when a typical time of the interac- €ase, one should take into account also the internal degrees

tion with the surface and with other rings is much larger thanOf freed_om for _the vortex Iings. . .
The inequalitieg3.4) also imply that vortex rings in the

the Iargest period of oscillations corresponding 0 deviqti_on%mit under consideration are similar to point magnet dipoles.
of the ring shape from the perfect one. Under this Condltlon’I'his analogy is useful for calculation of the Hamiltonian for

excitations of all(noncyclica) internal degrees of freedom . N : S X
L .__interacting rings. In the main approximation, we may restrict
are always small, and a variational ansatz completely dlsret

garding them reflects the behavior of the system adequatel ne analysis by taking into account the dipole-dipole interac-

The circulations Yion only.
It should be mentioned that in some pap@ee, e.g.[14]

and references in that bopthe discrete variables identical to
r,= f d?v R, and P, are derived in a different way and referred to as
n the vortex magnetization variables.
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In the expression for the Hamiltonian, several simplifica-can easily be derived if we take into account that the main
tions can be made. Let us recall that for each moment of timeontribution to the energy is from the vicinity of the tube
it is possible to decompose the velocity field into two com-where the velocity field is approximately the same as near a
ponents, straight vortex tube. The logarithmic integral should then be

V=Vt V. 3.5 takgn betweer! the limits from the thickness of the tube to the
radius of the ring.

In the relationWV =®,+ ¢, the potentiald, is approxi-

Here the fieldV, satisfies the following conditions: !
mately equal to the potential created on the flat surface by

(V-Vg)=0, curlVo=Q, (n-Vy),-,=0. the dipoles and their images,
The boundary value of the surface wave poteniél) is 1 P,-(r; —Rpy)
¢(r,). In accordance with these conditions, the kinetic en- Po(r )= (r)=— o ; I —R,[? - (3812
ergy is decomposed into two parts and the Hamiltonian of Lo
the fluid takes the form In this way we arrive at the following simplified system
g describing the interaction of point vortex rings with the free
H=%J V§d3r+%f 1/;(V¢>~dS)+§f ndr, . surface:
z<npy
(3.6

L= 2 RnPn+ f n(P+ q))der —H[{Rn,Pu}, 7,41
The last term in this expression is the potential energy of the " (3.13
fluid in the gravitational field. If all vortex rings are far away ’
from the surface, then its deviation from the horizontal plane It should be noted that due to the conditi¢®.4), the
is small, maximum value of the velocity/, on the surface is much

less than the ical velocities of the vortex rings,
(Vyl<l, |nl<[Z. 3.7 P 9

: : L . ri?
Therefore, in the main approximation the energy of dipole E <
interaction with the surface can be described with the help of Zﬁ Pﬁlz
so-called “images.” The images are vortex rings with circu- I ) .
lationsI",, and parameters Therefore, the ternvg/2 in the Bernoulli equation
2 .
RE=(Xn,Yn,—Zn), P:=(Pxn,Pyn,—Pz). (3.9 W+ Vy/2+gn+ (small corrections=0

The kinetic energy for the system of point rings and theirlS Small in comparison with the ter¥;. The Lagrangian
images is the sum of the self-energies of rings and thé3-13 is in accordance with this fact because it does not take

dipole-dipole interaction between them. The expression folto account terms like (1/2Vg7 d*r, in the Hamiltonian
the kinetic energy of small-amplitude surface waves employ&Xpansion.

the operatork, which multiplies Fourier components of a
function by the absolute valueof a two-dimensional wave IV. INTERACTION OF THE VORTEX RING
vector k. So the actual HamiltoniarH is approximately WITH ITS IMAGE

equal to the simplified Hamiltoniaf, _ N _
Now let us consider for simplicity the case of a single

= 1 S 1 ring. It is shown in the next section that for a sufficiently
H%H:; gn(P”)+§J (¢k¢+gn2)er+% deep ring, the interaction with its image is much stronger
than the interaction with the surface waves. So it is interest-
3(Rpx - Po) (R - PF) = |Ru+|2(Py-PF) 1 ing to examine the motion of the ring neglecting the surface
X < E + 8 deviation. In this case we have the integrable Hamiltonian
ni*

for the system with two degrees of freeddmotion is in a
vertical plane,

3(Rpyi-P)(Ry-P) — Ry |2(P,- P
(Rt Pn) (Roi- P) = [Rp| 4( |), 3.9 . .

I+n R |® 2 2 2T PX
| nl| H=% LY(PX+ PZ)]'M—F y (41)
where
Ry=R,—R/, Ry+=R,—R}. (3.10 wherea~const. The system has integrals of motion,

) . . . P,=p=const, H=E=const,
With logarithmic accuracy, the self-energy of a thin vor-

tex ring is given by the expression so it is useful to consider the level lines of the energy func-
2 I3 tion in the left Z,P,)-half-plane taking?, as the parameter.
E(P)~—" | Pn (Pn/Tn) (3.11 If one will draw the sketch of level lines of the function
ment 2 Ngary, A%/Z ' H(Z,P,), Eq. (4.1), then he will immediately distinguish
three regions of qualitatively different behavior of the ring in
where the small consta#, is proportional to the conserved that part of this half-plane where our approximation is valid
volume of the vortex tube forming the ring. This expression[see Eq.(3.4)]. In the upper region, the phase trajectories
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come from infinitely large negativ& where they have a e ikX P.7—P.x
finite positive value ofP,. In the course of motionP, in- D= o
creases. This behavior corresponds to the case when the ring 2m V(x2+y?+27?%)3
approaches the surface. Due to the symmetry of the Hamil-

e~ i (kyx+ kyY)d xd y

tonian (4.1), there is the symmetric lower region, where the e X Px 9
vortex ring moves away from the surface, and there is the - PZD(k|Z|)+'E5_kXD(k|Z|) '
middle region, wheré®, changes sign from negative to posi-
tive at a finite value ofZ. This is the region of the finite 5.4
motion.

In all three cases, the track of the vortex ring bends to-W here
ward the surface, i.e., the ring is “attracted” by the surface. e 9dqdp

D(q)= | ———==27eld. (5.5
V. CHERENKOV INTERACTION OF A VORTEX RING V(a2+182+ 1)3

WITH SURFACE WAVES Finally, we have ford, ,

When the ring is not very far from the surface and not iP.Kk
very slow, the interaction with the surface waves becomescpk:( X
significant. Let us consider the effect of Cherenkov radiation k
of surface waves by a vortex ring which moves from infinity (5.6
to the surface. This case is the most definite from the viewp e o the exponential time behavior ®,(t), it is easy to
point of the choice of initial conditions. We suppose that thegpiqin the expressions fak(t) and 7,(t). Introducing the
deviation of the free surface from the horizontal pla¥e0 definition

is zero att— —oo, and we are interested in the asymptotic

behavior of fieldsy and ¢ at large negativé. In this situa- A=KC,—ik,Cy, (5.7
tion we can neglect the interaction of the ring with its image . .

in comparison with the self-energy and concentrate our atlVe Can represent the answer in the following form:

— PZ) e* k|Z|*inX= (% — PZ) et(kczfikxcx)_

tention on interaction with surface waves only. )\E
The ring moves in thex,z) plane with an almost constant ()= =— eMkt (5.9
velocity. In the main approximation the positidd of the Ck/ gk+ )\ﬁ
vortex ring is given by the relations 5 )
IE(P) m(t) = (5 Y eM!, (5.9
R~ Ct, C:W:(CX’O’CZ)NP_WZ' (5.2 g k

The radiated surface waves influence the motion of the
C,>0, C.>0, t<0. vortex ring. The terms produced by the fielg(t) in the

The equations of motion for the Fourier componentszof equations of motion for the ring come from the part

and ¢ follow from the Lagrangian3.13), f77<I>_cI2rl in the Lagrangiar(3.13. Using Eq.(5.6) for the
) . ) Fourier transform ofb, we can represent these terms as fol-
m=Ki, Pt gme=— Dy (5.2 lows:

[The equations for the surface waves are the same in the case . d?k . ik, K7 kX

when a rigid body moves deeply under the surface of an :f (zw)zﬂk?e *

ideal fluid. The difference is in the relatiol®¥P) between

momenta and velocities. As against the Egj1), for a rigid _ d2k .

body C~ P. The equations of motion fd? also differ. Nev- 6Z2= f et kX

ertheless, if the velocity of a vortex ring or a rigid body is (2m)?

almost constant, as it is assumed here, then in the main ap- )
proximation it is not possible to distinguish what approaches SP.— _f dk 77 (ik,)
the water surface, rigid body, or vortex ring by measuring X (2m)? KX
the corresponding surface pattern. The difference in a tem-

poral behavior of the patterns appears only when the velocity . f d?k

P+ iplzkx) ekZ+ik X

iPyky

P+ —

is changed significantly by an interaction in the course of oP,= —— K

2
motion. So, in principle, the situation can be resolved. Prob- (2m)

ably, an appropriate analysis should take into account alsgye can use Eq(5.9) to obtain the nonconservative correc-
the effects of the viscosity. This interesting problem is Notijons for time derivatives of the ring parameters from these

) ekZHikX

considered in the present pager. , expressions. It is convenient to write down these corrections
Eliminating 7, , we obtain an equation fap,, in the autonomic form
it gkifie= = Py, (53 . _( P)f d?k (ikx (KCmikC® 0
where ®, is the Fourier transform of the functio®(r,). C/) (2m)?\ kK /gk+(kC,—ik,Cy)? '

Simple calculations give (5.10
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. [P d’k  (kC,—ik,C,)3 dw (w+ia)?(w?+a?)

522 — f e*Zk‘Z|, Jz(a,b)E

C/J (2m)? gk+ (KC,—ik,C,)? Y V1-w? b?—(w+ia)?
(617 =—2m(a%+b%+1/2)
2 2 H
5'5*:_(2) fé k)z(%) i(b[a2+(b_ia)z] cc) (5.18
T —ml| ———C.C.|, .
V1—(b—ia)?

| (kG ikCA(CoR*+ CRkD)

e~ 22|
gk+ (kC,—ik,Cy)?

(5.12)
oP,= (P)ZJ =
z Cl J (2m)?
. 2, 21,2 21,2
><(kc:z ikyCy)*(C7k"+ Ck5) e 2z (513

gk+ (kC,—ik,C,)?

whereC, andC, can be understood as explicit functiongof
defined by the dependen€XP)=d&/JP. More exact defi-

nition of C, andC, asX andZ is not necessary.

To analyze the above integrals, let us first perform there
the integration over the angle in k space. It is convenient
to use the theory of contour integrals in the complex plane of Py g
variablew=cose. The contoury of integration in our case

goes clockwise just around the cut, which is fremi to + 1.

We define the sign of the square rdfw) = '1—w? so that
its values are positive on the top side of the cut and negative

on the bottom side. After introducing the quantities

_ CZ 2 _ Wy _ 1 \/5
a= CX' wk_gkl bk_CXk_C_X E! (514)
we have to use the following relations:
dw  w(w+ia)®
I,(a,b)=—
' ry1-w? b?—(w+ia)?
(b—ia)b?
=m(14+2b%)+ 7i| ———=—c.c.|,
V1—(b—ia)?
(5.15
dw (w+ia)®
I,(a,b)=i
? 7 V1-w?2 b?>—(w+ia)?
bZ
=277a+(—+c.c.), (5.16
V1—(b—ia)?
dw  w(w+ia)3(w?+a?)
Ji(a,b)=i
' Y V1-w?  b%—(w+ia)?
b(b—ia)(a?+(b—ia)?)
=—4rab’+w +c.c.|,
V1-—(b—ia)?

where the sign of the complex square root should be taken in
accordance with the previous choice. It can easily be seen
that the integrald, and J; have resonance structure at

<1 and|b|<1. This is the Cherenkov effect itself. Now the
expression$5.10—(5.13 take the form

Py [+ e
f 11(a,by)k?eZdk

" 2mzlo
3
Pe [0 2¢|Z]
- = | Fyla,——], 5.1
(2m?\c? 1( c? 549
P, fm
= 1,(a,b)k2e~2KZIdk
2m2Jo 2(a,by)
3
29/Z|
= = =, 5.2
(2m)?\ C2 2( c? 520
oP, = Px FWJ (a,b ke 2Zdk
(2m2lo TRTTK
p2 4 29|z
R e e P
(2m)?\ Cs (o
. P? j+w
oP,= J,(a,by)k3e2KZlgk
4 (277_)2 0 2( k)
p2 4 29z
=7 % G,| a, g|2| . (5.22
(2m)?\ CZ Cs

Here the function$-,(a,Q)- - - G,(a,Q) are defined by the
integrals

bo 1

Fl(a,Q)=f0 |1(a,\/—g)eXD(—Q§)§2d§, (5.23
+on 1

Fz(a,Q)=fO |2(a,ﬁ)exp(—Q§)§2d§, (5.24
b 1

Gl(arQ):fO J1 a'\/_g exp(— Q&) £%d¢, (5.29
+or 1

G;z(a,Q)=j0 J2 a,ﬁ)exp(—Qg)f‘dg, (5.2

and Q=2g|Z|/C2 is a dimensionless quantityif we con-
sider a fluid with surface tensionr, then two parameters
appearQ andeg(r/Cj. In that case one should substitute
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by— V1/é+TE as the second argument of the functions . 1 P2 i1
l1,15,d1,J, in the integrals(5.23—(5.26).] The Cherenkov OPy~— WWQ exp(—Q),
o

effect is most clear when the motion of the ring is almost
horizontal. In this casa— +0, and it is convenient to re-
write these integrals without use of complex functions, _ 9 P21
P, ~+ — — —.
tee z 321 |7)4
Fl<+o,Q>=wf0 (&+2¢)exp —QE)dé—2m 21 Q

1 &dé It follows from these expressions that the interaction with the
XJ exp —Q¢), (5.27 surface waves is small in comparison with the interaction
OV1-¢ between the ring and its image,@>1. The corresponding

s small factors are @ for X andP,, andQ?" *2exp(—Q) for

+o0 ;
_ _ _ Z. Contrary to the flat boundary, noR is not conserved. It
F2(+0Q)=G,(+0Q) 277] VéE—1 e —Qd), decreases exponentially slowly and this is the main effect of
(5.28 Cherenkov radiation.
. We see also that the interaction with waves turns the vec-
G,(+00Q)=— J 34 2£2)exn — d tor P towards the ;urface, which results in a faster boundary
2(+0Q) T 0 (€ Elex—Qads approach by the ring track.

2q
+27rf1 £de exp(—Qé). (5.29 VI. CONCLUSIONS
0\1—¢ '

. . _ In this paper, we have derived the simplified Lagrangian
Here the square root is the usual positive defined regl funGer the description of the motion of deep vortex rings under
; . : the free surface of perfect fluid. We have analyzed the inte-
the functionsF; and G,, while F, and G, are determined a6 gynamics corresponding to the pure interaction of the
also by small values of which correspond to the large-scale single point vortex ring with its image. It was found that

surface deviation comoving with the ring. So the effect of they, e are three types of qualitatively different behavior of the
Cherenkov radiation on the vortex ring motion is the mosting The interaction of the ring with the surface has an at-
distinct in the equations faZ andP, . Itis especially impor-  tractive character in all three regimes. The Fourier compo-
tant for P, because the radiation of surface waves is the onlyyents of radiated Cherenkov waves were calculated for the
reason for change of this quantity in the frame of our apcase when the vortex ring comes from infinity and has both

proximation. horizontal and vertical components of the velocity. The non-
The typical values o are large in practical situations. In conservative corrections to the equations of motion of the
this limit, asymptotic values of the above integrals are ring, due to Cherenkov radiation, were derived. Due to these
corrections, the track of the ring bends towards the surface
9m 18w . R
Fi(+0Q)~— —, Gy(+0Q)~—, faster than in the case of a flat surface. For simplicity, all
2Q*4 5 calculations in Sec. V were performed for a single ring. The
generalization for the case of many rings is straightforward.
F2<+0,Q>=Gl<+o,Q>w—2wﬁ&r@,
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